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ABSTRACT 

In this paper, we propose a hybrid approach using a 
statistical 3D model of the spine generated from a database 
of 732 scoliotic patients with high-level anatomical 
primitives identified and matched on biplanar radiographic 
images for the three-dimensional reconstruction of the 
scoliotic spine. The 3D scoliotic curve reconstructed from a 
coronal and sagittal radiograph is used to generate an 
approximate statistical model based on a transformation 
algorithm which incorporates intuitive geometrical 
properties. An iterative optimization procedure integrating 
similarity measures such as deformable vertebral contours 
and epipolar constraints is then applied to globally refine the 
3D anatomical landmarks on each vertebra level of the 
spine. A qualitative evaluation of the retro-projection of the 
vertebral contours obtained from the proposed method gave 
promising results while the quantitative comparison yield 
similar accuracy on the localization of low-level primitives 
such as the six landmarks identified by an expert on each 
vertebra.  

Index Terms— 3D spine reconstruction, radiographs, 
statistical model, deformable contours, scoliosis.

1. INTRODUCTION 

Several clinical studies in orthopedics have used 3D models 
of the spine for evaluating pathologies in spinal deformities 
such as idiopathic scoliosis. Biplanar radiographs are still 
the imaging modality which is most frequently used for the 
clinical assessment of spinal deformities since it allows the 
acquisition of patient’s data in the natural standing posture. 
To generate a 3D model of the patient’s spine, certain points 
(anatomical landmarks) on the vertebra within the image 
have to be located in order to obtain a three-dimensional 
model of the scoliotic spine using a triangulation algorithm 
[1]. Currently, this identification is performed manually by 
an expert operator and consists of locating six anatomical 
landmarks (2 endplate midpoints + 4 pedicle tips) on each 
vertebra from T1 (first thoracic vertebra) to L5 (last lumbar 
vertebra) on a coronal and sagittal radiograph. However, it 
is difficult to identify with precision low-level primitives 

such as exact points and to match them accurately on a pair 
of views. Thus the repeatability of this procedure cannot be 
assured. Furthermore this task is a time-consuming, tedious 
and error-prone, and the quality of the 3D reconstruction is 
directly linked with the precision of 2D localization. 
      In order to reduce inaccuracy on the 2D localization of 
landmarks and to be a clinically useful procedure, studies 
were conducted to propose more automated methods. 
Statistical shape models, and more recently 2D-3D 
registration methods, have been the focus of a lot of 
attention for the 3D reconstruction of the human spine. 
While some have used preoperative computed tomography 
(CT) or magnetic resonance (MR) images to register with 
2D radiographic images [2], others have used statistical a 
priori knowledge of the 3D geometric shapes in order to 
model the 2D vertebral shapes [3]. Currently most methods 
use statistical models capturing the geometrical knowledge 
of isolated scoliotic vertebrae [4] or ad hoc symbolic 
constraints on the whole spine shape [5]. A variability 
model (mean and dispersion) of the whole spine allowed 
increasing the accuracy of the 2D-3D registration algorithm 
[6]. However, none of these proposed methods have 
attempted to integrate a statistical model taking into account 
the set of admissible deformations for the whole scoliotic 
spine shape with high-level contour based information of the 
vertebrae extracted from the radiographic image. It is our 
belief that taking advantage of the full potential of the 
radiographic image content would increase the accuracy of 
the 3D reconstruction procedure.  
      The objective of this study is to propose a novel method 
for the 3D reconstruction of the spine by using the 3D spine 
centerline to predict an initial shape which reproduces the 
pathological deformations observed on a representative 
scoliotic spine database. Deformation of vertebral models, 
epipolar constraints and morphological/feature based 
information taken on the radiographs are then used to refine 
the 3D landmarks through a bundle adjustment approach.  

2. MATERIAL AND METHODS 

2.1. Reconstruction of a 3D spinal curve 

To generate the patient-specific spinal curve in 3D, the spine 
centerline must  first be extracted from the calibrated  radio- 
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Fig. 1. (a) Coronal and (b) sagittal spine centerlines.              
(c) Corresponding 3D reconstruction of the spinal curve. 

graphs to calculate the 3D coordinates of the curve using a 
triangulation algorithm. Both centerlines are obtained semi-
automatically and modeled by 2D B-splines to ease the 
user’s adjustments. A parametric 3D B-spline spinal curve 

3)( ℜ∈uCk
 is then reconstructed as illustrated in Figure 1. 

2.2. Approximate statistical 3D model of the spine 

The 3D spinal curve Ck (u) is used to predict an initial spine 
model from a 3D database containing 732 scoliotic spines 
demonstrating several types of deformities, by mapping the 
3D curve to a low-dimensional subspace. We propose an 
algorithm derived from a locally linear embedding 
transformation [7], which is based on simple geometric 
intuitions to generate a personalized spine model. It 
computes a low-dimensional embedding of high-
dimensionality data assumed to lie on a non-linear manifold, 
with the property that similar models of a spine in the high 
dimensional space remain nearby, and similarly remain co-
located with respect to one another in the low dimensional 
space. Given N spine models expressed by the B-splines 
C(u)i, C(u)i ∈ RD, i∈[1,N], each of dimensionality D, it 
provides N points Yi, Yi ∈ Rd, i∈[1,N] where d<<D. The 
algorithm has four sequential steps: 
      Step 1. With an adequate number of data points 
available so that the underlying manifold can be considered 
to be “well-sampled” enough to represent the scoliotic 
population, each individual data point of the training set and 
its corresponding neighbors would be sufficiently close to 
lie within a locally linear patch on the manifold. The K
closest neighbors are selected for each point using the 
Euclidean distance as a closeness measure. 
      Step 2. The second step involves solving for the 
manifold reconstruction weights. Clearly, the local geometry 
of the patches referred to in Step 1 can be described by 
linear coefficients that permit the reconstruction of every 
model point from knowledge of its neighbors. In order to 
determine the value of the weights, the reconstruction errors 
are measured by the cost function: 
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where C(u)i  is a data vector and � (W) sums the squared 
distances between all data points and their corresponding 
reconstructed points. The weights Wij represent the 
importance of the jth data point to the reconstruction of the 
ith element.  
      Step 3. The third step of the algorithm consists of 
mapping each high-dimensional C(u)i to a low-dimensional 
Yi, representing the global internal coordinates using a cost 
function which minimizes the reconstruction error: 
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      The coordinates Yi can be translated by a constant 
displacement without affecting the overall cost, 

�
(Y). This 

degree of freedom is removed by requiring the coordinates 
to be centered at the origin, such that �Yi=0. The optimal 
embedding, up to a global rotation of the embedding space, 
is obtained from the bottom d + 1 eigenvectors of the matrix 
M. The d eigenvectors form the d embedding coordinates. 
      Step 4. The final step applies an analytical method based 
on nonlinear regression to perform the inverse mapping 
from the d embedding. Given the original training data 
consisting of N (732) scoliotic spine models Xi, (i =1,2..N) , 
each of D2 dimension (output high-dim. space), and their
respective projection Yi (embedded data) obtained in step 3 
of the algorithm for every C(u)i (computed from Xi), then 
each dimension of the D2 space can be regressed by: 
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where xi = fi (Y) = �j � ijk(Y,Yi) + b is a SVR regression model 
using a Radial Basis Function kernel, Xnew = (s1,s2,…,s17), 
where si is a vertebra model defined by  si = (p1,p2,...,p6), and 
pi = (xi,yi,zi) is a 3D vertebral landmark. Equation (3) 
provides a means of generating new spine models in 
D2=102 space (D2=17 vertebrae x 6 landmarks) from a new 
embedded point and the training scoliotic data in the lower-
dimensional d-space. This method not only allows 
restraining the search space for localizing the anatomical 
landmarks, but also avoids solving the point-matching 
problem between the biplane views. In the case that some 
landmarks are completely invisible, this method can offer an 
approximate position based on the statistical distribution of 
the pathological population. 

2.3. Bundle adjustment of the 3D vertebral landmarks 

The crude statistical 3D model of the personalized spine is 
subsequently refined by adjusting the 3D coordinates of the 
vertebrae. The set of 3D landmarks pi for each vertebra si are 
globally adjusted based on the following measures. 

Image gradient edge alignment: In order to integrate 
image-based information in the optimization process, we 
developed a similarity estimate based on the distance of the 

(a)  (b)  (c) 
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projection of a 3D deformed model to the computed 
gradient of the radiographs. The approach would: 1) deform 
prior generic high resolution 3D vertebra model (17 in total) 
obtained from CT acquisitions, using a free form 
deformation technique with the set of landmarks pi as the 
control points [1]; 2) project the triangulated mesh of the 3D 
model using the calibration matrices to create a silhouette 
onto the images; 3) compute a 2D distance map for these 
edges and; 4) sum over the distance map values at the 
locations indicated by the edges of the gradient image. 
Given the binary gradient radiographic image, the distance 
of an image point x to the projected edge structures Y = {yi} 
is d(x) = mini |x – yi|. We can then express the proximity to 
edges by using a Gaussian expression controlled by �2: 
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      However due to the poor quality of the radiographic 
images, we do not have precise edge information and the 
gradient images may not correspond to the edge templates. 
We therefore define the proximity in (4) as: 
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where pji is the probability for pixel yi in image j of being an 
edge. To determine the values of pji, a two-dimensional 
proximity function p(x) can be computed by convoluting the 
radiographic image with a large Gaussian kernel. 

Epipolar geometry constraint: The calibration of the 
three-dimensional viewing geometry can also be used to 
constrain the landmark correspondence between the biplanar 
images. We therefore developed an iterative retro-projection 
method to help refine landmark position, by taking the 
current 3D landmark location, project it in 2D onto the 
coronal (PA)/ sagittal (SAG) views and measure the 
perpendicular distance of the projected coordinate on both 
views to its corresponding epipolar line. The distance error 
for the N landmark points is defined as: 
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where d(*) denotes the Euclidean distance of a point to a 
line, 

�
i is the analytical projection of the 3D object point pi

obtained from standard perspective transformation formulae. 
F
�

i is the corresponding epipolar line on one image based 
on point pi from the other image, and F is the 4x4 
fundamental matrix integrating the geometrical parameters ξ
which describes the projective 3D structure of the scene.  

Maximum Likelihood estimation: Finally, a maximum 
likelihood model estimation integrating 2D morphological 
and feature information was developed to measure the error 
given from the current data. This estimate expresses the 
measure of  similarity  between  the current model  points

�
i 

and  an  estimate wi(x) which encodes expert  morphological  

Fig. 2. Morphological estimation model (top) and landmark 
specific features (bottom). 

knowledge of the relationships between the N (N=6) 
landmarks. Each landmark i is assigned to a specific 
function of wi(x) depending on the landmark type (i.e. 
pedicle tip), and is based on local vertebral height, width, 
orientation and relative distances between landmarks 
(Figure 2). The model also measures the similarity response 
of a rotation and scale invariant wavelet coefficient feature 
cmsd specific to the landmark type, at location 

�
i on the 

image. The probability of this likelihood estimate is:
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      The similarity measures are defined as: 
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where wi
PA(x)=�j

�
jfj(x) and wi

SAG(x)=�j
�

jsj(x) are the 
estimates on the coronal and sagittal plane respectively. 

Cost function: For a bundle adjustment of the 3D landmark 
coordinates, a non-linear optimization method minimizes 
the cost function E(sl) with respect to all 6 anatomical 
landmarks in sl at each vertebral level l (starting from L5 
and progressing to T1), based on the measures taken on the 
biplane images. We used the Powell-Brent optimization 
method to minimize the following cost function combining 
equations (5), (6) and (7): 

       ( ) PxdsE l log)()( 321 ωξεωω ++=      (10)

where ( )[ ] ( )11 −− += llll sTssRs takes into account the previous 
updated vertebra model, and (R, T) is the rigid displacement 
of landmarks pi at the previous vertebra level sl-1 before/after 
optimization. Figure 3 summarizes the proposed scheme. 

3. RESULTS AND DISCUSSION 

To validate the proposed method, ten pairs of radiographic 
images from scoliotic patients treated at our clinical site 
were processed for personalized 3D reconstruction of their 
spine. The evolution of the cost  function with respect to  the 
estimate for any vertebral level. To assess the precision of 
the  image   similarity   measure  used  for  the  optimization 
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Fig. 3. (a) Approximate statistical 3D model. (b) Sequential 
refinement using deformable 3D prior models fitted on the 
radiographs (control points shown as stars). (c) Landmark 
adjustments brought by the optimization scheme.  

procedure, Figure 4 shows promising results with the retro-
projection of the deformed 3D vertebra contours (high-level 
primitive) fitting adequately to the bony edges of the 
corresponding vertebra in the coronal and sagittal 
radiographic image. Moreover, a quantitative evaluation 
showed the projected anatomical landmarks from the 
optimized 3D model yield similar accuracy to the gold 
standard 2D locations manually identified by a radiology 
expert on each vertebra. The overall 2D mean difference for 
the selected cases was of 2.3 ± 1.7 pixels, while the point to 
point mean difference between the 3D spine models issued 
from the proposed technique and from a manual 
identification yielded a 3D mean error of 1.8 ± 1.5 mm for 
lumbar vertebra and 2.2 ± 1.6 mm for thoracic vertebra.  
     One of the challenges in landmarking vertebrae on 
radiographs for generating 3D models is the poor visibility 
due to the superposition of several anatomical structures, 
specifically in the sagittal thoracic region of the spine. The 
human expert must therefore infer the landmark positions 
based only on his knowledge of the anatomical structure of 
the spine. The proposed method offers a more reliable 
approach to this problem by integrating statistical, image-
based and morphological knowledge, and therefore becomes 
a suitable tool for clinical assessment of spinal deformities.  

4. CONCLUSION 

We presented a method to automatically compute a 
personalized 3D geometrical model of the spine based on 
the statistical distribution of a scoliotic population. 
Deformable 3D vertebral models projected on the image 
planes and epipolar/morphological constraints were used to 
refine the anatomical landmark coordinates of the model.          
We successfully applied our method to a group of scoliotic 
patients. Results presented in this paper suggest that an 
accurate geometry of the spine can be obtained by using a 
hybrid  approach  which  captures a pathological  population   

Fig. 4. Comparison of landmark and projected contours 
results from the manual (square/dashed line) and proposed 
method using 3D deformable models (cross/solid line). 

exploits the image’s content, offering an efficient method 
for spine 3D reconstruction in a routine clinical 
environment. We used the highest number of patients 
available (N=732) to create a predictive statistical model 
which would represent all types of deformity in the scoliotic 
population; however classifying the database into multiple 
pathological categories would reduce the size of N and offer 
a more representative sample of patients. Other future 
directions lies in increasing the accuracy of the method by 
modifying the objective function to integrate inter-vertebral 
variability models to obtain a better approximation of the 
spine and optimizing the deformable 3D models via a level-
set approach. The proposed method can be extended to other 
medical reconstruction applications such as for the pelvis or 
femur, when a sufficient amount of prior data is available to 
adequately model various types pathologies. 
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